319 research outputs found

    Parsing XML Using Parallel Traversal of Streaming Trees

    Full text link
    Abstract. XML has been widely adopted across a wide spectrum of applica-tions. Its parsing efficiency, however, remains a concern, and can be a bottleneck. With the current trend towards multicore CPUs, parallelization to improve per-formance is increasingly relevant. In many applications, the XML is streamed from the network, and thus the complete XML document is never in memory at any single moment in time. Parallel parsing of such a stream can be equated to parallel depth-first traversal of a streaming tree. Existing research on parallel tree traversal has assumed the entire tree was available in-memory, and thus cannot be directly applied. In this paper we investigate parallel, SAX-style parsing of XML via a parallel, depth-first traversal of the streaming document. We show good scalability up to about 6 cores on a Linux platform.

    Effect of spatial bias on the nonequilibrium phase transition in a system of coagulating and fragmenting particles

    Full text link
    We examine the effect of spatial bias on a nonequilibrium system in which masses on a lattice evolve through the elementary moves of diffusion, coagulation and fragmentation. When there is no preferred directionality in the motion of the masses, the model is known to exhibit a nonequilibrium phase transition between two different types of steady states, in all dimensions. We show analytically that introducing a preferred direction in the motion of the masses inhibits the occurrence of the phase transition in one dimension, in the thermodynamic limit. A finite size system, however, continues to show a signature of the original transition, and we characterize the finite size scaling implications of this. Our analysis is supported by numerical simulations. In two dimensions, bias is shown to be irrelevant.Comment: 7 pages, 7 figures, revte

    Water-like anomalies for core-softened models of fluids: One dimension

    Full text link
    We use a one-dimensional (1d) core-softened potential to develop a physical picture for some of the anomalies present in liquid water. The core-softened potential mimics the effect of hydrogen bonding. The interest in the 1d system stems from the facts that closed-form results are possible and that the qualitative behavior in 1d is reproduced in the liquid phase for higher dimensions. We discuss the relation between the shape of the potential and the density anomaly, and we study the entropy anomaly resulting from the density anomaly. We find that certain forms of the two-step square well potential lead to the existence at T=0 of a low-density phase favored at low pressures and of a high-density phase favored at high pressures, and to the appearance of a point CC' at a positive pressure, which is the analog of the T=0 ``critical point'' in the 1d1d Ising model. The existence of point CC' leads to anomalous behavior of the isothermal compressibility KTK_T and the isobaric specific heat CPC_P.Comment: 22 pages, 7 figure

    A branching, positive relief network in the middle member of the Medusae Fossae Formation, Equatorial Mars - evidence for sapping?

    Get PDF
    The Medusae Fossae Formation (MFF) is a geological formation comprising three geological units (members) spread across five principal lobes. It dominates a quarter of the longitudinal extent of the equatorial region of Mars. Positive relief features referred to as ‘sinuous ridges' (commonly interpreted as inverted paleoflow channel or valley fills) have been observed in the lowest member of the western MFF, but have not been identified within the central and eastern portions of the formation, in the middle and upper members. This paper presents the identification and analysis of a branching, positive relief system which occurs in the central lobe of the MFF in what appears to be an exposure of the middle member. A simple geomorphological map of the system is presented, from which we have adopted the working hypothesis that this is an inverted fill of a branching fluvial channel or valley system. A suite of morphological and topographic evidence supporting this hypothesis is presented, including analysis of the network using a~15 m per pixel digital terrain model derived from a Context Imager (CTX) stereo image pair. The evidence supporting this hypothesis includes: 1) The local slope and topography of the upper surface of the network are consistent with a contributory network, 2) The braided, fan-like form at the termination of the branching network is consistent in morphology with it being a depositional fan at the end of a fluvial system, 3) The terminal fan and surrounding deposits show layering and polygonization, 4) There is strong association between the lower order branches and amphitheater shaped scarps in the depression walls. We evaluate the possible origins of this fluvial system and suggest that seepage sapping is the most probable. Two possible models for the evolution of the network and related features are presented; both require melt of ice within the MFF to form liquid water. We conclude that at least some portions of the Medusae Fossae Formation, if not the entire formation, were once volatile-rich. Finally, we note that our observations do not rule out the case that this network formed before MFF emplacement, and has since been exhumed. However, this conclusion would suggest that much of the surrounding terrain, currently mapped as middle-member MFF, is not in fact MFF material at all

    Aqueous dune-like bedforms in Athabasca Valles and neighbouring locations utilized in palaeoflood reconstruction

    Get PDF
    Putative fluvial dunes have been identified within the Athabasca Valles and associated network of channels on Mars. Previous published work identified and measured bedforms in Athabasca Valles using photoclinometry methods on 2–3 m/pixel resolution Mars Orbiter Camera Narrow Angle images, and argued that these were created by an aqueous megaflood that occurred between 2 and 8 million years ago. This event is likely to have occurred due to geological activity associated with the Cerberus Fossae fracture system at the source of Athabasca Vallis. The present study has used higher resolution, 25 cm/pixel images from the Mars Reconnaissance Orbiter HiRISE camera, as well as stereo-derived digital terrain models and GIS software, to re-measure and evaluate these bedforms together with data from newly discovered neighbouring fields of bedforms. The analysis indicates that the bedforms are aqueous dunes, in that they occur in channel locations where dunes would be expected to be preserved and moreover they have geometries very similar to megaflood dunes on Earth. Dune geometries are used to estimate megaflood discharge rates, including uncertainty, which results support previous flood estimates that indicate that a flood with a discharge of ∼2 × 106m3s−1 created these bedforms

    Complex geomorphologic assemblage of terrains in association with the banded terrain in Hellas basin, Mars

    Get PDF
    Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called “banded terrain”, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore